Тропность вирусов. Названия вирусов (терминология латинская)

В связи с тем, что вирусы являются патогенами внутриклеточными, каждый представитель мира вирусов имеет тропность к определенному типу клеток.

Тропизм вируса определяется наличием на клетке - мишени рецептора для данного вируса, а также возможность генома вируса встроиться в геном клетки. Рецепция в свою очередь определяет: а) конкретный вирус взаимодействует только с определенными рецепторами, б) на клетке могут быть рецепторы для различных типов вирусов и в) рецепторы для определенного вируса могут быть на клетках различных типов. Рецепторную функцию выполняют различные структуры (лиганды): белки, липиды, углеводные компоненты белков и липидов..

Выбор лабораторных животных зависит от вида вируса. Лабораторные животные являются биологической моделью. Иногда приходится проводить 3-5 «слепых», бессимптомных пассажей, прежде чем удастся адаптировать вирус к лабораторным условиям. Однако, к некоторым вирусам лабораторные животные не чувствительны, в этом случае приходится использовать естественно восприимчивых животных. Как, например, при чуме свиней и инфекционной анемии лошадей.

Выбор метода заражения лабораторных животных зависит от тропизма вируса. Так, при культивировании нейротропных вирусов животных заражают в мозг; респираторных интранозально, интратрахеально; дерматропных - подкожно и внутрикожно. Заражение производят с соблюдением правил асептики и антисептики. Различают много способов введения вируссодержащего материала в организм животных: - Подкожный; - Интрацеребральный; - Внутрикожный; - Интраперитониальный; - Внутримышечный; - Интраокулярный; - Внутривеннвй; - Интранозальный; - Алиментарный;

После заражения животных метят, помещают их в изолированный бокс и ведут наблюдение в течение 10 суток. Гибель животного в первые сутки после заражения считается неспецифичной и в дальнейшем не учитывается. 3 признака указывают на результативность заражения: - наличие клинических признаков - гибель животного - патологоанатомические изменения (величины, формы, цвета и консистенции органа)



Культивирование вирусов на куриных и перепелиных эмбрионах в последнее время получило широкое распространение как один из наиболее простых и надежных методов культивирования и диагностики многих вирусов и некоторых бактерий - бруцеллы, риккетсии, вибрионы. Многие вирусы человека и животных способны культивироваться в развивающихся куриных эмбрионах. Эмбриональная ткань, особенно оболочки эмбриона, богатые тканями зародышевого эпителия, является благоприятной средой для размножения многих вирусов. Вирусы, имеющие эпителиотропные свойства (оспа, ИЛТ и др.), успешно развиваются на хорионаллантоисной мембране, вызывая макроскопически видимые изменения. Различные представители миксовирусов (грипп, болезнь Ньюкасла, чума плотоядных и др.), вирусы инфекционного бронхита, гепатита утят, арбовирусы и др. хорошо размножаются в эмбрионе при введении материала в аллантоисную полость. Некоторые вирусы успешно культивируются в желточном мешке.

Методы заражения эмбрионов:

(Наиболее часто используют заражение в аллантоисную полость и на хорионаллантоисную оболочку, реже – в амниотическую полость и в желточный мешочек и совсем редко – в тело зародыша и в кровеносные сосуды ХАО. Выбор метода определяется тропизмом вируса, а также целью заражения. При любом методе заражения вводят 0,1–0,2 мл инфекционного материала.)

1.Заражение в аллантоисную полость. При заражении этим методом хорошо размножаются вирусы гриппа, ньюкаслской болезни, ринопневмонии лошадей, везикулярного стоматита и др. Существует несколько вариантов метода.

Первый вариант . Эмбрион фиксируют вертикально тупым концом вверх. В скорлупе на стороне зародыша, а иногда с противоположной зародышу стороны на 5–6 мм выше границы воздушной камеры делают отверстие диаметром около 1 мм. Иглу вводят параллельно продольной оси на глубину 10–12 мм. После инъекции вируссодержащего материала иглу извлекают, а отверстие в скорлупе закрывают каплей расплавленного стерильного парафина.

Второй вариант. Сделанное в скорлупе над воздушной камерой отверстие используют лишь для выхода части воздуха. Отверстие же для самого заражения делают на участке бессосудистой зоны хорионаллантоисной оболочки (ХАО) со стороны зародыша. Иглу вводят на глубину не более 2–3 мм. Инъецируют инфицирующую жидкость в объеме 0,1–0,2 мл и закрывают отверстие парафином

2. Заражение на хорионаллантоисную оболочку . Этот метод заражения куриных эмбрионов чаще используют для культивирования эпителиотропных и пантропных вирусов оспы, инфекционного ларинготрахеита птиц, чумы плотоядных, болезни Ауески, катаральной лихорадки овец и др.

Такое заражение может быть выполнено через естественную или искусственную воздушную камеру.

Для заражения через естественную воздушную камеру эмбрион помещают в штатив вертикально тупым концом вверх и в скорлупе против центра воздушной камеры вырезают круглое окно диаметром 15–20 мм. Через это окно пинцетом снимают подскорлупную оболочку. На обнажившийся участок ХАО наносят 0,2 мм вируссодержащей суспензии, отверстие закрывают лейкопластырем или реже покровным стеклом, укрепив его расплавленным парафином.

Заражение через искусственную воздушную камеру применяют чаще первого, так как оно обеспечивает контакт вируссодержащего материала с большей поверхностью ХАО и, следовательно, ведет к образованию большего количества вируса.

Для заражения эмбриона этим методом его помещают в штатив горизонтально зародышем вверх. В скорлупе делают два отверстия: одно небольшое над центром воздушной камеры (предназначено для отсасывания из нее воздуха), а другое диаметром 0,2–0,5 см сбоку, со стороны зародыша. Сложность метода в том, что, делая второе отверстие, необходимо осторожно снять вначале кусочек скорлупы, затем скользящим движением, не повреждая ХАО, сдвинуть подскорлупную оболочку в сторону так, чтобы через образовавшийся дефект мог пройти воздух. После этого резиновой грушей через первое отверстие отсасывают воздух из естественной воздушной камеры (рис. 19, а).В результате через боковое отверстие наружный воздух устремляется внутрь, образуя искусственную воздушную камеру, дном которой является ХАО

Через боковое отверстие на поверхность ХАО наносят инфекционную жидкость и отверстие закрывают кусочком лейкопластыря. Закрывать первое отверстие нет необходимости, так как внутренний листок подскорлупной оболочки при этом методе заражения не нарушается и продолжает выполнять роль барьера для микрофлоры окружающей среды.

Дальнейшую инкубацию эмбрионов, зараженных этим методом, проводят в горизонтальном положении боковым отверстием вверх.

3.Заражение в желточный мешок. Большей частью им пользуются для размножения хламидий, а также вирусов болезни Марека, ринопневмонии лошадей, катаральной лихорадки овец и др. Заражают эмбрионы 5–7-дневного, а иногда и 2–3-дневного возраста (вирус лихорадки долины РИФ). Используют два варианта заражения.

Первый вариант. Эмбрионы помещают в штатив в вертикальном положении. Делают отверстие в скорлупе над центром воздушной камеры и вводят иглу на глубину 3,5–4 см под углом 45° к вертикальной оси в направлении, противоположном месту нахождения зародыша

Второй вариант. Иногда аналогичный путь заражения осуществляется на горизонтально укрепленном в штативе эмбрионе; при этом зародыш находится внизу, а желток–над ним. Отверстие в скорлупе закрывают каплей расплавленного парафина.

4.Заражение в амниотическую полость. Для этой цели используют эмбрионы 6–10-дневного возраста. Метод используется при культивировании вирусов гриппа, ньюкаслской болезни, ринопневмонии лошадей и др. Есть два способа заражения.

Закрытый способ . Заражение проводят в затемненном боксе. Яйцо помещают на овоскопе в горизонтальном положении зародышем вверх. Через отверстие в скорлупе над воздушной камерой вводят иглу с затупленным концом по направлению к зародышу. Доказательством того, что игла проникла в амнион, служит движение тела зародыша в направлении передвижения.

Открытый способ. Скорлупу над воздушной камерой срезают так, чтобы образовалось окно диаметром 1,5–2,5 см. Через него пинцетом под контролем глаза снимают подскорлупную оболочку. Затем анатомический (14 см) пинцет с сомкнутыми браншами ведут, продавливая хорионаллантоисную оболочку по направлению к зародышу. Когда пинцет достигнет его, бранши размыкают, захватывают амниотическую оболочку вместе с ХАО и подтягивают к окну. Удерживая левой рукой пинцет с фиксированной в нем оболочкой амниона, вводят вируссодержащий материал. Далее все оболочки опускают, окно закрывают лейкопластырем и эмбрион инкубируют в вертикальном положении.

5. Заражение в кровеносные сосуды ХАО. При овоскопировании 11– 13-дневных эмбрионов отмечают крупный кровеносный сосуд. По его ходу удаляют участок скорлупы, наносят 1–2 капли спирта, что делает на некоторое время подскорлупную оболочку прозрачной. Под контролем глаза на овоскопе иглу вводят в сосуд, что подтверждается его подвижностью при небольших боковых движениях иглы. Обнаженный участок подскорлупной оболочки закрывают кусочком лейкопластыря.

Можно материал в сосуды ввести и несколько отличающимся способом: срезают скорлупу над воздушной камерой, подскорлупную оболочку смачивают спиртом и в ставшие видными сосуды ХАО вводят материал. Отверстие закрывают кусочком стерильного лейкопластыря.

6.Заражение в тело зародыша. Для заражения используют эмбрионы 7–12-дневного возраста. Известно два варианта метода.

Первый вариант. Заражают так же, как в амнион закрытым способом, с той лишь разницей, что берут острую иглу и на овоскопе показателем попадания иглы в тело считают подчинение зародыша движениям иглы.

Второй вариант . Заражают так же, как в амнион открытым способом: через окно в скорлупе подтягивают пинцетом тело зародыша. Материал вводят в головной мозг или определенные участки тела. При таких методах заражения бывает значительный процент неспецифической гибели эмбрионов.

Проникновение вируса в клетку обусловлено, с одной стороны, качеством рецепторов оболочки клетки (мукопротеиды или липопротеиды), а с другой стороны, качеством «фермента проникновения» вируса. Так, вирусы гриппа и аденовирусы, содержащие специфические энзимы (нейраминазу, муциназу), реагируют с мукопротеидными (полисахаридными) рецепторами и легко проникают в цитоплазму и ядро эпителиальных клеток дыхательных путей.

Вирус полиомиелита реагирует с липопротеидными рецепторами, имеющими сродство с богатой липидами мозговой тканью, и проникает в цитоплазму нейрона.

Ферменты клетки разрушают белки — капсомеры вируса, вследствие чего происходит высвобождение в цитоплазме вирусной нуклеиновой кислоты и включение ее в ультраструктуры клетки хозяина.

Нарушается белковый обмен клетки. Возникает гиперплазия и деструкция митохондрий, канальцев, эндоплазматической сети, рибосом, направленных теперь на синтез структурных компонентов вируса с формированием вирионов. Репродукцию нуклеиновой кислоты обеспечивают в ядре РНК- и ДНК-полимеразы, а на рибосомах эндоплазматической сети строятся белки — капсомеры вируса. Пластинчатый аппарат (Гольджи) гибнет, а вместе с этим прекращается и специфическая функция клетки.

Описанные процессы приводят к извращению белкового обмена в клетке, возникает белковая дистрофия, в цитоплазме клетки происходит накопление денатурированного белка, процесс заканчивается коагуляционным или коллимационным некрозом клетки.

При инфекционном процессе любой этиологии
— бактериальной или вирусной — возникают антитела, направленные против возбудителя инфекций. Циркулирующие в крови антитела образуются в ответ на антигенное раздражение в клетках ретикулоэндотелиальной системы, но главным образом в клетках иммунокомпетентных органов, а затем поступают в кровоток.

Соединения антигена с антителом в присутствии комплемента оказывают антимикробное и антитоксическое действие, обеспечивающее на длительный срок послеинфекционный гуморальный иммунитет. В то же время повторное поступление микробного белкового антигена может сенсибилизировать организм и вызывать на высоте сенсибилизации от небольшой дозы, но повторно введенного антигена, аллергическую реакцию и инфекция начинает протекать с явлениями гиперчувствительности замедленного или немедленного типа вплоть до развития анафилаксии.

Эти факты объясняют, почему организм человека, находясь под воздействием факторов внешней среды, в том числе патогенных микробов, при заражении или не заболевает, или заболевает очень тяжелой формой или же очень легкой, клинически едва уловимой формой инфекции (стертые формы). Видимо, все эти различия проявления инфекции зависят не столько от особенностей микроорганизма, сколько от реактивности макроорганизма и степени его сенсибилизации.

Инфекционные болезни изучаются по определенной классификационной схеме, которая учитывает ряд особенностей каждой группы инфекций и выявляет некоторые общие закономерности течения инфекционного процесса.

«Патологическая анатомия», А.И.Струков


Механизмы развития вирусной инфекции. Стадии вирусной инфекции. Проникновение вируса в клетку, сборка вирусов и выход из клетки. Противовирусный иммунитет.


Используемая в нашем центре Программа лечения хронических вирусных инфекций дает возможность:
  • в короткие сроки подавить активность инфекционного процесса
  • эффективно восстановить иммунную защиту организма
  • снизить дозы противовирусных препаратов и уменьшить токсический эффект этих препаратов на организм пациента
  • повысить чувствительность к традиционным противовирусным препаратам
  • профилактировать рецидив инфекции
Это достигается за счет применения:
  • метода Криомодификации аутоплазмы позволяющего удалить из организма токсические метаболиты микроорганизмов, медиаторы воспаления, циркулирующие иммунные комплексы
  • технологий Инкубации клеточной массы с противовирусными препаратами , обеспечивающих доставку препаратов непосредственно в очаг инфекции
  • технологий Экстракорпоральной иммунофармакотерапии , работающих непосредственно с клетками иммунной системы и позволяющих эффективно и на длительное время повысить противовирусный иммунитет

Механизмы развития вирусной инфекции

Стадии вирусной инфекции

На клеточном уровне выделяют три стадии вирусной инфекции:

  • адсорбция вируса на клеточной мембране и проникновение вируса в клетку
  • экспрессия и репликация вирусного генома
  • сборка вирусов и выход вирусов из клетки

Адсорбция вируса на клеточной мембране и проникновение вируса в клетку

Заражение клетки вирусами начинается с адсорбции вируса на клеточной мембране, происходящей благодаря взаимодействию поверхностных белков вируса с мембранными рецепторами клетки. Различные вирусы используют для связи с мембраной клетки разные клеточные рецепторы. Так, например:

  • капсидные белки вируса полиомиелита связываются с особым рецептором – CD155
  • капсидные белки риновирусов – с молекулами адгезии ICAM-1. CD155 и ICAM-1 – принадлежат к суперсемейству иммуноглобулинов
  • капсидные белки ЕСНО-вирусов – с α v β 3 -интегрином
  • гемагглютинины внешней оболочки вируса гриппа – с остатками сиаловой кислоты
  • гликопротеиды внешней оболочки ВИЧ – с молекулой CD4 и рецепторами хемокинов
  • гликопротеиды внешней оболочки вируса простого герпеса – с гепарансульфатом и рецептором ФНО
  • гликопротеиды вируса Эпштейна–Барр – с рецептором фрагмента компонента комплемента C3d (CD21) на поверхности В-лимфоцитов

Температура, как правило, мало влияет на адсорбцию вирусов (при 4°С и при 37°С скорость этого процесса практически одинакова). Связывание вирусов с мембранными рецепторами не защищает вирусы от нейтрализации антителами.

Адсорбированные вирусы проникают в клетку с помощью эндоцитоза или путем слияния с клеточной мембраной. Оказавшись в цитоплазме, вирусы освобождаются от большинства белков (раздевание вирусов ) и начинают реплицироваться. Проникновение в клетку, раздевание и репродукция вирусов зависят от интенсивности энергетического метаболизма клетки и биохимических изменений, происходящих в клеточной мембране и цитоскелете. Так, при температуре ниже 37°С проникновение вирусов в клетку замедляется.

Пусковым фактором проникновения вируса в клетку обычно служит связывание некоторых поверхностных белков вируса с мембранными рецепторами клетки . Эти белки представлены на поверхности вирусов по крайней мере несколькими молекулами, а количество мембранных рецепторов обычно достигает нескольких сотен.

В месте контакта вируса с клеточной мембраной происходит агрегация рецепторов, которая запускает механизм внутриклеточной передачи сигнала и стимулирует изменения в клеточной мембране. Адсорбция вируса обычно воспринимается клеткой как присоединение «нормального» лиганда к соответствующему рецептору.

Адсорбция многих вирусов запускает эндоцитоз, начинающийся с образования на мембране окаймленных ямок, покрытых клатрином. Затем формируются эндосомы, в составе которых вирусы поступают в цитоплазму. Данный способ проникновения в клетку характерен для пикорнавирусов, вирусов гриппа и аденовирусов. Последующее слияние вирусов с мембраной эндосом стимулируется понижением рН в эндосоме.

Влияние рН на процесс проникновения хорошо изучено у вируса гриппа. В адсорбции этих вирусов, агрегации рецепторов и эндоцитозе важную роль играют гемагглютинины внешней оболочки. Конформационные изменения гемагглютинина, возникающие при низком рН в эндосоме, приводят к выходу на поверхность молекулы амфифильных доменов, что приводит к слиянию внешней оболочки вируса и эндосомальной мембраны.

На молекулярном уровне процессы слияния с мембраной и раздевания большинства вирусов изучены плохо. В результате слияния липиды и белки внешней оболочки вируса смешиваются с липидами и белками клеточной мембраны, а нуклеокапсид вируса оказывается в цитоплазме.

У сложных вирусов в адсорбции и слиянии с клеточной мембраной могут последовательно участвовать разные белки внешней вирусной оболочки. Есть данные, что в разных тканях или на разных поверхностях эпителиальных клеток механизмы адсорбции вирусов и их проникновения в клетку неодинаковы.

Экспрессия и репликация вирусного генома

После проникновения вирусов в клетку и раздевания – вирусный геном и связанные с ним вирусные белки оказываются в цитоплазме. Внутри зараженной клетки происходят:

  • репликация вирусного генома
  • синтез структурных вирусных белков, из которых собираются новые вирусы

Существует определенный порядок транскрипции вирусных мРНК, которые затем транслируются с образованием белка. Репликация вирусного генома и сборка нуклеокапсидов большинства РНК-содержащих вирусов происходят в цитоплазме, а большинства ДНК-содержащих вирусов – в ядре.

Вирусная плюс-цепь РНК может непосредственно служить матрицей для синтеза белка , поэтому такие вирусы не имеют в своем составе ферментов. Проникшая в клетку вирусная РНК взаимодействует с рибосомами зараженной клетки с помощью участка, называемого внутренним сайтом связывания рибосомы (IRES), и инициирует трансляцию полипротеина.

Протеазный компонент полипротеина расщепляет его с образованием вирусной РНК-полимеразы и других вирусных белков. Продуктом транскрипции вирусного генома (плюс-цепи РНК) является комплементарная цепь РНК (минус-цепь), на матрице которой при участии вирусной РНК-полимеразы синтезируются вирусные геномы (плюс-цепи РНК) и мРНК. Сборка РНК-содержащих вирусов с плюс-цепью осуществляется в цитоплазме.

В составе РНК-содержащих вирусов с минус-цепью РНК находится РНК-полимераза, которая проникает в клетку вместе с вирусным геномом. Большинство вирусов этого типа полностью реплицируются в цитоплазме. Вирусная РНК-полимераза осуществляет транскрипцию мРНК, а также полной комплементарной РНК (плюс-цепи). На матрице последней синтезируется вирусный геном (минус-цепь).

В результате трансляции мРНК синтезируются вирусная РНК-полимераза и другие вирусные белки.

Необычными свойствами обладает вирус гриппа: геном этого вируса представлен сегментированной минус-цепью РНК, причем образование мРНК и комплементарной плюс-цепи РНК происходит в клеточном ядре. Сегменты вирусной РНК проникают в ядро вместе с вирусной РНК-полимеразой и вспомогательными белками. В ядре протекают два процесса, необходимые для репродукции вируса гриппа:

  1. процессинг вирусной РНК (перенос 5"-концов клеточных мРНК, содержащих 7-метилгуанозин, на плюс-цепи вирусной РНК и полиаденилирование З"-конца) и
  2. сплайсинг некоторых РНК вируса гриппа

Процессинг облегчает узнавание вирусных мРНК рибосомами и способствует трансляции. Сборка РНК-содержащих вирусов с минус-цепью РНК, в том числе вирусов гриппа, происходит в цитоплазме.

Геномы большинства ДНК-содержащих вирусов (за исключением поксвирусов) транскрибируются в ядре клетки-хозяина с помощью клеточной РНК-полимеразы II.

Синтез и процессинг мРНК у этих вирусов практически полностью осуществляется за счет клеточных механизмов (несколько вирусных белков участвуют только в регуляции транскрипции).

У многих ДНК-содержащих вирусов транскрипция происходит в три этапа, во время которых избирательно считываются сверхранние, ранние и поздние гены.

Нуклеокапсиды герпесвирусов проникают в цитоплазму вместе с белками матрикса, затем этот комплекс транспортируется вдоль микротрубочек к порам ядерной оболочки и далее в ядро. Белки матрикса вместе с клеточными факторами транскрипции запускают транскрипцию сверхранних генов. У герпесвирусов продукты сверхранних генов, так называемые сверхранние белки, играют роль трансактиваторов и необходимы для начала транскрипции ранних генов.

Однако у других ДНК-содержащих вирусов транскрипция ранних генов может происходить и без участия сверхранних белков.

Большинство ранних генов кодируют белки, осуществляющие репликацию вирусной ДНК и запуск транскрипции поздних генов.

Поздние гены кодируют главным образом структурные белки, необходимые для сборки вирусов и выхода собранных вирусов из зараженной клетки. Транскрипция поздних генов зависит от репликации ДНК и прекращается в присутствии ингибиторов репликации.

Для каждого семейства ДНК-содержащих вирусов характерен уникальный механизм репликации ДНК.

Геном герпесвирусов представлен линейной ДНК, которая в зараженной клетке замыкается в кольцо. Кольцевые молекулы вирусной ДНК реплицируются по механизму «катящегося кольца» с образованием длинных линейных конкатемерных молекул, состоящих из многих копий вирусного генома. Затем конкатемерные молекулы расщепляются на полноценные вирусные геномы. В репродукции герпесвирусов участвуют вирусная ДНК-полимераза и вирусные ферменты, увеличивающие внутриклеточную концентрацию дезоксинуклеозидтрифосфатов – структурных элементов ДНК.

Репликация линейных геномов аденовирусов происходит при участии вирусной ДНК-полимеразы и нуклеотид-белкового комплекса, выполняющего роль праймера.

Двухцепочечные кольцевые геномы паповавирусов реплицируются с сохранением кольцевой структуры. Репликация осуществляется клеточными ферментами, а для запуска репликации необходим ранний вирусный белок – Т-антиген. Иногда геномы паповавирусов (например, папилломавирусов) встраиваются в хромосому зараженной клетки, что приводит к усиленной экспрессии вирусных белков и неконтролируемому делению клетки. Интеграция паповавирусов в клеточный геном может стать причиной злокачественного новообразования, например рака шейки матки.

В отличие от репродукции других ДНК-содержащих вирусов, репродукция поксвирусов полностью происходит в цитоплазме. Эти вирусы содержат факторы транскрипции, РНК-полимеразу, а также набор ферментов, обеспечивающих процессинг мРНК (присоединение 7-метилгуанозина, полиаденилирование).

Геном поксвирусов имеет уникальное строение: комплементарные цепи двухцепочечной ДНК на обоих концах ковалентно соединены между собой, так что в действительности геном состоит из одноцепочечной кольцевой молекулы ДНК. Кроме того, в геноме имеются инвертированные концевые повторы. Репликация вирусной ДНК начинается с расщепления одной из цепей в области инвертированных концевых повторов; затем одновременно на обоих концах генома начинается синтез комплементарной цепи, который осуществляет вирусная ДНК-полимераза. Праймером служит прилегающий к месту расщепления короткий участок расщепленной цепи (самозатравочный механизм). Поксвирусы, как и герпесвирусы, кодируют несколько ферментов, способствующих репликации ДНК путем увеличения концентрации дезоксирибонуклеозидтрифосфатов.

Вирусы, использующие обратную транскрипцию

Геном ретровирусов и вируса гепатита В на разных стадиях цикла размножения образован или РНК, или ДНК.

Ретровирусы имеют диплоидный геном, представленный двумя идентичными плюс-цепями РНК; вирусы содержат также ферменты – обратную транскриптазу и интегразу.

Только у ретровирусов на матрице вирусной РНК с помощью обратной транскриптазы синтезируется двухцепочечная ДНК – провирус. Затем провирус встраивается в хромосому клетки-хозяина. Интеграция провируса с клеточным геномом – обязательный этап жизненного цикла этих вирусов. В геноме человека обнаружены нуклеотидные последовательности эндогенных ретровирусов, поэтому не исключено, что существуют пока неизвестные ретровирусы человека, способные к репродукции.

Транскрипцию интегрированного провируса с образованием мРНК и геномной РНК обеспечивает вирусный промотор. Транскрипция контролируется клеточными и вирусными регуляторными факторами.

Так, относящиеся к подсемейству Oncovirinae Т-лимфотропные вирусы человека типа 1 и 2 (возбудители тропического спастического парапареза и Т-клеточного лейкоза-лимфомы взрослых) помимо характерных для всех ретровирусов структурных белков, обратной транскриптазы, интегразы и белков внешней оболочки синтезируют также белки Tax и Rex, регулирующие транскрипцию и процессинг РНК.

У относящихся к подсемейству Lentivirinae ВИЧ-1 и ВИЧ-2 в результате альтернативного сплайсинга образуются многочисленные мРНК, кодирующие регуляторные белки Tat, Rev, Nef, Vpr, Vpu (у ВИЧ-1) и Vif. Сборка ретровирусов происходит вблизи клеточной мембраны. Нуклеокапсиды формируются из двух идентичных молекул РНК, включающих полный вирусный геном, клеточной тРНК и структурных белков, образующихся при разрезании полипротеина Gag. Внешнюю оболочку вирусы приобретают, отпочковываясь в участках клеточной мембраны, содержащих вирусные гликопротеиды.

Геном вируса гепатита В, относящегося к семейству гепаднавирусов, состоит из кольцевой частично двухцепочечной ДНК. Цепи вирусной ДНК ковалентно не замкнуты. После проникновения вируса в цитоплазму короткая цепь вирусной ДНК достраивается с помощью вирусной ДНК-полимеразы с образованием полностью двухцепочечной ДНК. Затем ковалентно замкнутая вирусная ДНК поступает в ядро и сохраняется там в виде эписомы. Здесь вирусная ДНК транскрибируется при участии клеточной РНК-полимеразы II с образованием полных РНК-копий вирусного генома и коротких мРНК. Полные РНК-копии вирусного генома, содержащие концевой повтор (то есть они длиннее исходной ДНК), 7-метилгуанозин на 5"-конце и полиаденилатный «хвост» на З"-конце, транспортируются в цитоплазму клетки и включаются в вирусный нуклеокапсид. Вирусная ДНК-полимераза, обладающая также активностью обратной транскриптазы, синтезирует на матрице РНК минус-цепь (кодирующую) ДНК, РНК разрушается и частично замещается короткой плюс-цепью (некодирующей) ДНК.

Сборка вирусов и выход их из клетки

Как только вирусные нуклеиновые кислоты и вирусные структурные белки синтезированы в достаточном количестве, начинается сборка вирусов.

Сборка и выход из клетки зрелых вирусов означает завершение фазы вирусной инфекции (эклипс-фазы), во время которой зрелые вирусы в зараженных клетках не обнаруживаются.

Включение нуклеиновых кислот в вирусные нуклеокапсиды у всех РНК-содержащих вирусов происходит в цитоплазме, а у всех ДНК-содержащих вирусов – в ядре. Исключение составляют поксвирусы и вирус гепатита В.

У вирусов, капсиды которых имеют форму икосаэдра, вирусные капсидные белки способны к самосборке в плотно упакованные и высокоупорядоченные структуры. Затем вирусная нуклеиновая кислота (часто нуклеопротеид) проникает в уже сформированный капсид или скручивается вокруг него. Напротив, при сборке вирусных нуклеокапсидов со спиральным типом симметрии, как правило, нуклеиновая кислота служит каркасом, вокруг которого собираются вирусные капсидные белки.

На последнем этапе репродукции вирусы должны покинуть зараженную клетку и не связываться вновь с ее поверхностью. Многие вирусы выходят из клетки путем отпочковывания от клеточной мембраны, приобретая при этом внешнюю оболочку. Избыток вирусных поверхностных белков способствует насыщению мембранных рецепторов клетки, препятствуя тем самым повторной адсорбции вируса. У некоторых вирусов поверхностные белки обладают ферментативной активностью и разрушают мембранные рецепторы клетки. Например, вирус гриппа синтезирует гликопротеид с нейраминидазной активностью, отщепляющий остаток сиаловой кислоты от гликопротеидов и гликолипидов клеточной мембраны. Нуклеокапсиды герпесвирусов покрываются внешней оболочкой при отпочковывании от внутренней мембраны ядерной оболочки. Далее их созревание идет двумя путями:

  1. вирусы попадают в цитоплазматические пузырьки и после слияния мембраны пузырька с клеточной мембраной выходят во внеклеточное пространство, или
  2. вирусы переходят в цитоплазму, утрачивают внешнюю оболочку и вновь приобретают ее в процессе отпочковывания от клеточной мембраны

Выход из клетки вирусов, не имеющих внешней оболочки, возможен только при условии гибели клетки и распада ее мембраны.

Точность репликации вирусного генома

В то время как деление клетки сопровождается удвоением ее генома и образованием двух новых клеток, вирусное потомство обычно состоит из 10 – 1000 зрелых вирусов и в 5 – 10 раз большего числа дефектных, не полностью собранных вирусов. При этом для вирусов характерна значительная изменчивость - появляются новые вирусные штаммы, которые не распознаются иммунной системой либо приобретают устойчивость к противовирусным препаратам.

Причины изменчивости в разных семействах вирусов неодинаковы. В целом при репликации вирусной нуклеиновой кислоты ошибки возникают чаще, чем при репликации клеточной ДНК. РНК-полимераза РНК-содержащих вирусов и обратная транскриптаза ретровирусов совершают значительно большее количество ошибок, чем ДНК-полимераза. У ДНК-содержащих вирусов ошибки, очевидно, обусловлены нарушением механизма репарации ДНК в зараженных клетках.

Сегментированный геном и обмен гомологичными участками генома между родственными вирусными штаммами (рекомбинация) способствуют изменчивости и образованию дефектных вирусов, например, при репродукции вируса гриппа. Дефектные вирусы, состоящие из пустых капсидов, а также вирусы, имеющие делеции или перестройки генома, образуются довольно часто, однако их патофизиологическое значение остается неясным.

Другие вирусные гены

Геномы многих РНК- и ДНК-содержащих вирусов включают гены, кодирующие белки, которые напрямую не участвуют в репликации, сборке вирусов или в регуляции транскрипции вирусных генов.

Большинство этих белков относятся к одному из четырех классов:

  • белки, прямо или косвенно изменяющие процессы клеточной пролиферации
  • белки, которые подавляют синтез клеточных ДНК, РНК и белков, обеспечивая эффективную транскрипцию и трансляцию вирусных мРНК
  • белки, которые способствуют выживанию клетки и угнетают апоптоз, что дает время для созревания вирусов и выхода их из зараженной клетки
  • белки, которые подавляют воспалительную реакцию и иммунный ответ хозяина

Таким образом, взаимодействие вируса с клеткой и организмом чрезвычайно сложно, и в современной вирусологии ему уделяется все большее внимание.

Тропность вирусов к клеткам

Каждый вирус способен репродуцироваться только в клетках определенного типа.

Тропность вируса определяется, главным образом, наличием на клеточной поверхности специфических рецепторов, обусловливающих адсорбцию и проникновение вируса в клетку. Кроме того, для репродукции вируса необходимо определенное состояние клеточного транскрипционного аппарата. Для транскрипции ДНК-содержащих вирусов, например, необходимы не только клеточная РНК-полимераза II и другие основные компоненты транскрипционного аппарата, но и различные активаторы, в частности факторы транскрипции, состав которых различается в клетках разных тканей, в разные фазы клеточного цикла, в покоящихся и пролиферирующих клетках.

В некоторых зараженных клетках не происходит репродукции паповавирусов и герпесвирусов, и эти вирусы сохраняются в латентном состоянии. Так, вирус папилломы человека заражает клетки базального слоя эпидермиса, однако репродукция вирусов происходит только после превращения зараженных клеток в кератиноциты.

Репродукция вируса простого герпеса, находящегося в латентном состоянии в нейронах ганглиев (тройничных, крестцовых, ганглиев блуждающего нерва), начинается только при воздействии внешних факторов (таких, как лихорадка, повреждение кожи, психическая травма), инициирующих транскрипцию сверхранних вирусных генов.

В В-лимфоцитах, зараженных вирусом Эпштейна–Барр (семейство герпесвирусов), вначале синтезируется белок, стимулирующий пролиферацию клеток. Другой вирусный белок блокирует активацию лимфоцитов и репродукцию вируса, запускаемые системой внутриклеточной передачи сигнала с участием тирозинкиназы семейства Src. Этот блок каким-то образом преодолевается, когда зараженные лимфоциты оказываются вблизи эпителия ротоглотки. В результате репродукции вирус попадает в слюну и может передаваться другому человеку воздушно-капельным путем.

Цитопатическое действие вирусов и угнетение апоптоза

Репродукция большинства вирусов сопровождается подавлением синтеза клеточных ДНК, РНК и белков. Видимо, это необходимо для того, чтобы предотвратить или ограничить выработку интерферона и обеспечить собственную репродукцию вирусов прежде, чем в организме разовьется полноценный иммунный ответ. Чаще всего вирусы специфически угнетают синтез клеточных белков, нарушая образование инициаторного комплекса трансляции, поскольку для трансляции вирусных мРНК этот комплекс обычно не нужен. Например, протеаза 2А вируса полиомиелита расщепляет компонент инициаторного комплекса трансляции, который обеспечивает узнавание рибосомой 7-метилгуанозина на 5"-концах клеточных мРНК. Поскольку мРНК вируса полиомиелита содержит внутренний сайт связывания рибосомы (си. выше), для ее трансляции 5"-концевой 7-метилгуанозин не нужен.

Вирусы гриппа отщепляют 5"-концевые участки, содержащие 7-метилгуанозин, от созревающих клеточных мРНК и используют их в качестве праймера для синтеза вирусных мРНК.

У вируса простого герпеса один из белков матрикса вызывает быстрое разрушение клеточных мРНК.

Частое следствие подавления синтеза клеточных макромолекул – индукция апоптоза. Этот процесс может иметь важное значение для выхода вирусов из клетки (особенно в случае вирусов, не имеющих внешней оболочки), но некоторые вирусы приобрели гены или части генов, позволяющие им отсрочить апоптоз зараженной клетки. Так, некоторые аденовирусы и герпесвирусы кодируют белки, аналогичные клеточному белку Вс12, который подавляет апоптоз лимфоцитов. Кроме того, некоторые паповавирусы и аденовирусы содержат белки, нейтрализующие действие белка р53, вызывающего остановку клеточного цикла и апоптоз зараженной вирусом клетки.

Вирус и организм

Капсиды и внешние оболочки надежно защищают вирусные геномы, позволяя вирусам распространяться из клетки в клетку и передаваться от одного хозяина другому. Чаще всего вирусные инфекции передаются воздушно-капельным, контактным и алиментарным путями. Попав на кожу или слизистые, возбудитель заражает клетки эпителия или проникает в глубжележащие ткани. В дальнейшем происходит гематогенное, лимфогенное или нейрогенное распространение вируса. Еще один путь заражения – попадание возбудителя непосредственно в кровь. Так инфекция распространяется от человека к человеку, например при инъекциях, или от животных (включая членистоногих) к человеку, например при укусах.

Первичная вирусная инфекция

Продолжительность первичной вирусной инфекции обычно колеблется от нескольких дней до нескольких недель. На протяжении этого периода число вирусов в очагах инфекции сначала нарастает, а затем уменьшается, вплоть до полного исчезновения. Скорость изменения числа вирусов зависит от доступности очага для вируса и для иммунной системы, от способности вируса к репродукции в нем, а также от защитных факторов организма.

Энтеровирусы, ротавирусы, аденовирусы, вирусы эпидемического паротита, кори, краснухи, гриппа, простого герпеса и вирус varicella-zoster исчезают практически из всех очагов первичной инфекции в течение 3–4 нед. Некоторые из этих вирусов способны препятствовать развитию иммунного ответа, тогда первичная инфекция затягивается на несколько месяцев.

Первичная инфекция, обусловленная вирусами гепатитов В, С и D, вирусом Эпштейна–Барр, цитомегаловирусом, ВИЧ, вирусом папилломы человека и вирусом контагиозного моллюска, обычно длится более месяца. При заражении цитомегаловирусом ее продолжительность может составлять несколько месяцев, а при заражении ВИЧ, папилломавирусами и вирусом контагиозного моллюска – еще больше.

Хотя клинические проявления инфекции обусловлены размножением вируса, тяжесть болезни не всегда соответствует интенсивности вирусной репродукции. Например, даже при ограниченном поражении нервных клеток энтеровирусами, вирусами полиомиелита, бешенства, кори, эпидемического паротита и простого герпеса клинические проявления более выражены, чем при интенсивной репродукции этих вирусов на слизистых. Особенно тяжелое течение краснухи и цитомегаловирусной инфекции часто наблюдается при внутриутробном заражении.

Ликвидация первичной инфекции происходит с помощью иммунной системы и других защитных факторов. В результате перенесенной инфекции у людей, не страдающих иммунодефицитом, обычно формируется иммунитет, препятствующий рецидиву болезни или реинфекции. Однако иммунитет не предотвращает преходящего заражения слизистых при повторном контакте с вирусом.

Персистирующая и латентная вирусная инфекция

Некоторые вирусы вызывают персистирующую или латентную инфекцию. К ним относятся вирусы гепатитов В и С, бешенства, кори, ВИЧ, Т-лимфотропные вирусы человека, паповирусы, герпесвирусы, а также некоторые поксвирусы. РНК-содержащие вирусы способны снижать эффективность иммунного ответа за счет высокой изменчивости их геномов. В ходе первичной и персистирующей инфекции гены вирусов гепатита С и ВИЧ претерпевают существенные перестройки.

Поскольку репликация двухцепочечной ДНК (по сравнению с репликацией РНК) сопровождается меньшим числом ошибок, ДНК-содержащие вирусы, персистируя у человека, не подвергаются значительным изменениям. Паповавирусы и герпесвирусы способны длительно сохраняться в некоторых клетках в латентном состоянии, при котором они недоступны для иммунной системы.

Реактивация латентной герпетической и паповавирусной инфекции приводит к постоянному или периодическому выделению небольшого количества вирусов из организма здорового носителя. Иммунный ответ носителя в большинстве случаев предотвращает появление симптомов болезни, но не влияет на выделение этих вирусов в окружающую среду, что обеспечивает их распространение среди детей и восприимчивых взрослых и является причиной постоянной циркуляции возбудителей среди населения.

Вирус контагиозного моллюска – представитель семейства поксвирусов – вызывает пролиферацию и гипертрофию эпидермиса. Заболевание проявляется папулами розового цвета с пупковидным вдавлением в центре и может длиться несколько месяцев или лет. Гипертрофию тканей при других поксвирусных инфекциях объясняют наличием у возбудителей гомологов клеточных генов, кодирующих факторы роста, в том числе эпидермальный фактор роста, Однако геном вируса контагиозного моллюска не содержит последовательностей, гомологичных известным генам эпидермального фактора роста и фактора роста фибробластов. В то же время в геноме этого вируса присутствует ген, кодирующий гомолог провоспалительных хемокинов. Этот гомолог связываясь с рецепторами хемокинов, предотвращает воспаление. Кроме того, вирус содержит гомолог гена HLA класса I, продукт которого может подавлять цитотоксическое действие Т-лимфоцитов.

Персистирующая вирусная инфекция и злокачественные новообразования

Предполагается, что 10–20% злокачественных новообразований человека имеют вирусную этиологию. Большинство случаев печеночноклеточного рака вызвано вирусами гепатитов В и С, практически все случаи рака шейки матки – вирусами папилломы человека типов 16, 18, 31 и 33, рак носоглотки – вирусом Эпштейна–Барр, а Т-клеточный лейкоз-лимфома взрослых – Т-лимфотропным вирусом человека типа 1.

В основе гипотезы об этиологической роли вирусов гепатита в развитии печеночноклеточного рака лежат эпидемиологические исследования и эксперименты на грызунах, показавшие, что эта опухоль часто развивается на фоне хронического вирусного гепатита. Трансформация гепатоцитов происходит в результате встраивания ДНК вируса гепатита B в геномы зараженных клеток.

Предположение о роли вирусной инфекции в развитии рака шейки матки, рака носоглотки и Т-клеточного лейкоза-лимфомы взрослых основано на данных эпидемиологических исследований, постоянном присутствии вирусной ДНК в опухолевых клетках, способности вирусов вызывать трансформацию человеческих клеток в культуре, а также на патофизиологической связи некоторых вирусных генов, экспрессируемых в опухолевых клетках, с трансформирующими свойствами вирусов, демонстрируемыми in vitro.

Вирус Эпштейна-Барр – возбудитель лимфопролиферативного синдрома у больных с ослабленным иммунитетом, В- или Т-клеточных лимфом, некоторых разновидностей рака желудка, лейомиосарком у больных СПИДом и значительного числа случаев лимфогранулематоза. Установлено, что гены и белки вируса Эпштейна-Барр способны влиять на клеточную пролиферацию. Согласно последним данным, открытый недавно герпесвирус может вызывать саркому Капоши.

В процессе поиска методов профилактики и лечения инфекций, вызываемых предположительно онкогенными вирусами человека, накапливаются все новые доказательства вирусной этиологии многих злокачественных новообразований.

Противовирусный иммунитет

Неспецифические защитные механизмы

На первом этапе инфекции вирусу противостоят неспецифические защитные механизмы. Физическую защиту обеспечивают ороговевающий эпителий кожи и секреты, омывающие поверхность слизистых. После проникновения вируса внутрь клетки важную роль в обеспечении местного иммунитета играют интерфероны и другие цитокины, вырабатываемые зараженными клетками. Вирусные белки, экспрессируемые на клеточной поверхности в комплексе с антигенами HLA, служат мишенью для несущих соответствующие рецепторы Т-лимфоцитов. Гибель зараженных вирусом клеток сопровождается выделением цитокинов, медиаторов воспаления и антигенов, которые вызывают миграцию в очаг первичной инфекции лейкоцитов и развитие воспаления. Особое значение для сдерживания вирусной инфекции в первые дни после заражения имеют интерфероны и NK-лимфоциты. Гранулоциты и макрофаги обеспечивают фагоцитоз и разрушение вирусов, особенно после начала выработки антител.

Гуморальный и клеточный противовирусный иммунитет

К концу первой – началу второй недели после заражения наблюдается активация гуморального и клеточного иммунитета:

  • появляются антитела к вирусу
  • накапливаются специфичные к данному вирусу лимфоциты CD4 (Т-хелперы), ограниченные по HLA класса II, и лимфоциты CD8 (цитотоксические Т-лимфоциты), ограниченные по HLA класса I

Интенсивность иммунного ответа, от которой зависит скорость выздоровления, как правило, нарастает на протяжении второй и третьей недель после заражения. Кроме того, между второй и третьей неделями происходит переключение синтеза классов иммуноглобулинов (с IgM на IgG), и на поверхности слизистых появляются специфичные к данному вирусу IgA.

Антитела нейтрализуют вирусы, связываясь с их поверхностью и тем самым предотвращая адсорбцию вирусов на клеточной поверхности или их проникновение внутрь клетки. Нейтрализующая способность антител обычно усиливается в присутствии комплемента. Клетки, зараженные вирусами, имеющими внешнюю оболочку, обычно содержат гликопротеиды внешней оболочки вируса в составе клеточной мембраны. Такие клетки могут лизироваться антителами к вирусным гликопротеидам при участии комплемента.

Выработка антител и накопление лимфоцитов CD4 и CD8 обычно продолжаются в течение нескольких месяцев после первичной вирусной инфекции, а небольшое количество клеток памяти надолго сохраняется в организме.

При повторном контакте с вирусом клетки памяти начинают быстро пролиферировать, обеспечивая быструю выработку антител и препятствуя заражению тем же вирусом. Т-лимфоциты, вероятно, обеспечивают более кратковременную иммунологическую память, и поэтому вторичный клеточный иммунный ответ развивается медленнее, чем вторичный гуморальный ответ, особенно если между первичной инфекцией и повторным контактом с возбудителем прошло много лет.

Некоторые вирусы содержат факторы, помогающие преодолеть защитные механизмы:

  • вирус-ассоциированные РНК аденовирусов препятствуют блокирующему действию интерферонов на синтез белка в зараженных клетках
  • белок Е1А аденовирусов препятствует активации транскрипции некоторых генов в ответ на интерфероны
  • белок ЕЗ аденовирусов предотвращает цитолиз, вызываемый FNO, и блокирует синтез HLA класса I в зараженной клетке
  • белок ICP47 вируса простого герпеса и белок US11 цитомегаловируса блокируют представление антигенов с помощью HLA класса I

Механизмы подавления действия интерферонов, NK-лимфоцитов и лимфоцитов CD8 появились у многих вирусов в процессе эволюции, что отражает важность этих факторов для борьбы с вирусной инфекцией, а также свидетельствует об избыточности защитных факторов организма. Даже при блокировании вирусами одного или нескольких защитных факторов организм подавляющего большинства людей с нормальным иммунитетом способен успешно бороться с инфекцией.

Накоплено много сведений о значении специфического иммунитета для защиты от вирусной инфекции. Недостаточность клеточного иммунитета часто проявляется тяжелой первичной или рецидивирующей инфекцией, вызванной герпесвирусами (ДНК-содержащие вирусы). Устойчивость организма ко многим РНК-содержащим вирусам в значительной степени обусловлена антителами. Однако ослабление симптомов заболевания, вызванного герпесвирусами, на фоне лечения нормальными иммуноглобулинами говорит о важной роли антител в защите и от этой инфекции. И наоборот, Т-лимфоциты – важный фактор защиты от РНК-содержащих вирусов, что подтверждается, в частности, наличием цитотоксических лимфоцитов CD8, несущих рецепторы к белку NP (нуклеопротеид) вируса гриппа. Дефицит одного из защитных факторов, таких, как интерферон, NK-лимфоциты, В-лимфоциты или Т-лимфоциты, в большинстве случаев компенсируется другими.

Факторы, обусловливающие устойчивость к вирусным инфекциям, иногда оказывают повреждающее действие на органы и ткани, внося вклад в развитие патологических проявлений инфекции. Воспалительная реакция, необходимая для эффективного подавления возбудителя в очагах инфекции, одновременно вызывает гибель клеток и участвует в патогенезе местных и общих симптомов болезни. Вирусная инфекция может приводить и к аутоиммунному поражению нервных или других клеток. Предполагают, что такое действие отчасти обусловлено перекрестными реакциями между вирусными и клеточными антигенами. Хотя такие реакции воспроизведены в экспериментах на животных, их роль в развитии аутоиммунных нарушений при первичной или рецидивирующей вирусных инфекциях у человека не установлена.

Интерфероны

Все клетки человеческого организма в ответ на вирусную инфекцию способны вырабатывать интерфероны α или β. Мощным индуктором синтеза этих интерферонов является двухцепочечная РНК, поэтому РНК-содержащие вирусы активируют синтез сильнее, чем ДНК-содержащие. Интерферон γ вырабатывается главным образом NK-лимфоцитами и Т-лимфоцитами под действием ИЛ-12. Интерфероны α и β связываются с рецепторами интерферона α, в то время как интерферон γ - с другими, но сходными рецепторами. В последующей внутриклеточной передаче сигнала участвуют сопряженные с рецепторами Янус-киназы и факторы транскрипции STAT. Янус-киназы фосфорилируют некоторые остатки тирозина факторов транскрипции, после чего активированные факторы транскрипции переносятся в ядро и индуцируют транскрипцию специфических клеточных генов.

Интерферон подавляет репродукцию вирусов, воздействуя на транскрипцию вирусных геномов тремя различными способами.

  • первый способ состоит в индукции синтеза 2",5"-олигоаденилатсинтетазы. В присутствии двухцепочечной РНК 2",5"-олигоаденилатсинтетаза полимеризует АТФ с образованием 2",5"-олигоаденилатов, которые в свою очередь активируют рибонуклеазу L, разрушающую одноцепочечные РНК
  • второй способ заключается в индукции синтеза протеинкиназы PKR. Эта протеинкиназа, которая также активируется двухцепочечной РНК, путем фосфорилирования блокирует фактор инициации трансляции eIF2α, что приводит к подавлению синтеза белка в зараженной клетке
  • В основе третьего способа лежит индукция синтеза белков Мх, обладающих ГТФазной активностью и имеющих особое значение для подавления репродукции вирусов гриппа и везикулярного стоматита

Интерфероны действуют неизбирательно, блокируя синтез не только вирусных, но и клеточных РНК и белков, что, вероятно, и приводит к гибели зараженной клетки.

Тропизм [вирусов] host range, tropism - круг хоязев, тропизм [вирусов].

Совокупность штаммов бактерий, типов клеток или видов одно- и многоклеточных организмов, на которых может размножаться вирус определенного вида (штамма); К.х. ограничивается теми клетками, которые экспрессируют рецепторы, используемые вирусами для проникновения в клетку (см. <amphotropic virus >, <ectotropic virus >).

(Источник: «Англо-русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд-во ВНИРО, 1995 г.)


Белки поверхности клеток, на к рых происходит специфическое связывание вирионного белка (вирусного рецептора, антирецептора), за к рым следует проникновение вируса в клетку. Определяют тканевый тропизм вирусов. У части клеток Р. отсутствуют, у… … Словарь микробиологии

круг хозяев - тропизм [вирусов] Совокупность штаммов бактерий, типов клеток или видов одно и многоклеточных организмов, на которых может размножаться вирус определенного вида (штамма); К.х. ограничивается теми клетками, которые экспрессируют рецепторы,… … Справочник технического переводчика

Host range. См. тропизм [вирусов]. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) …

Tropism . См. тропизм [вирусов]. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.

Круг хоязев. См. тропизм [вирусов]. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.

У этого термина существуют и другие значения, см. Тропизм (значения). Тропизмы (от греч. τροπος поворот, направление) реакция ориентирования клетки, то есть направление роста или движения клеток относительно раздражителя (химического … Википедия

ВИРУС - (лат. virus яд), термин, в широком смысле употребляемый для обозначения всякого живого возбудителя инфекционных б ней и заменивший более старый термин «contagium vivum» (Kircher). Напр., говорят: В. брюшного тифа, В. дифтерии. Но чаще … Большая медицинская энциклопедия

- (Arboviruses) – класс РНК–содержащих вирусов, покрытых оболочкой. Переносятся членистоногими (комарами, клещами, москитами и др.). Возбудители клещевого энцефалита, желтой лихорадки и др. болезней человека и животных. (

То есть направление роста или движения клеток относительно раздражителя (химического, светового и др.).

Если растение под влиянием раздражителя изгибается к источнику раздражителя, то это положительный тропизм , а если оно изгибается в противоположную сторону от раздражителя, то это отрицательный тропизм .

  • Ортотропизм - расположение органа растения вдоль градиента раздражителя.
  • Диатропизм - расположение под прямым углом к градиенту раздражителя.
  • Плагиотропизм - ориентация под любыми другими углами.

В основе тропизма лежит одно из свойств цитоплазмы клетки - её раздражимость, как ответной реакции на различные факторы внешней среды.

Термин «тропизм» в основном применяют при описании автоматизмов поведения растений . Для характеристики простейших автоматизмов, включённых в сложное поведение животных , исследователи употребляют такое понятие как таксисы . Ранее термин «тропизм» нередко употребляли в зоологии в том же смысле, что термин «таксисы».

Двигательные реакции органов растений на ненаправленные факторы воздействия внешней среды называются настии . Обычной причиной, вызывающей настии, является изменение в тканях растения концентрации кальция и хлора .

Тропизм растений

Ответные реакции растений на различные односторонние воздействия раздражителей внешней среды (свет, земное притяжение, химические вещества и др.) заключаются в направленных ростовых и сократительных движениях (изгибах) органов растения, приводящих к изменению его ориентации в пространстве. Ростовые движения зависят от вида раздражителя, механизм действия которого на растения сложен. Эти движения могут возникать в растущих частях растений, как следствие более быстрого роста клеток, расположенных на одной стороне органа растения (стебле , корне , листе). В органах растения возникают растяжения, связанные с асимметричным распределением в них фитогормонов роста растений - ауксина и абсцизовой кислоты и др.

Тропизмы различают в зависимости от вида раздражителя.

Геотропизм

Фототропизм

Хемотропизм

Хемотропизм вызывает движение растений под влиянием химических соединений. Наиболее яркий пример хемотропизма - рост корней в сторону больших концентраций питательных веществ в почве.

Термотропизм

Движение растений или частей растения в ответ на изменение температуры. Типичным примером термотропизма является скручивание листьев рододендрона при понижении температуры. Мимоза стыдливая также проявляет термотропизм в форме сворачивания листочков на общем черешке листа при понижении температуры.

Аэротропизм

Хемотаксические искривления, наблюдаемые на корнях и стеблях различных растений, подвергающихся одностороннему воздействию газообразных веществ (углекислоты, кислорода и других).

Тропизм микроорганизмов

Тропизм у паразитов выражается в свойстве избирать в качестве среды обитания определённые организмы (видовой тропизм ) или органы (органный , или тканевой , тропизм). Видовой тропизм обусловливает круг

 
Статьи по теме:
Обзор лучших разных видов эпиляторов(2019г
Пинцетом или бритвой вы лишь на короткое время избавитесь от волос, а после бритья они будут расти ещё интенсивней. Поэтому и придумали эпиляцию, что дословно означает искусственное удаление волос с помощью различных средств. Также происходит воздействие
Sony Xperia XZ - Технические характеристики
Статью прочитали: 5 226 Компания Sony выпускает новый флагманский смартфон каждые полгода, а иногда и чаще. Несмотря на это, а может благодаря этому, компания слегка выпала из поля зрения широкого круга пользователей. Новые модели Sony привлекают всё м
Как самостоятельно перепрошить любой iphone в домашних условиях
Iphone одна из самых популярных марок телефонов, но при этом очень дорогая. Китайские копии телефонов, конечно, не такие производительные, но выглядят эффектно. А вот китайская прошивка оставляет желать лучшего.Пошаговое руководство по прошивке/ перепроши
Mozilla Thunderbird скачать бесплатно русская версия
Mozilla Thunderbird — бесплатный почтовый клиент, который является отдельной составляющей проекта Mozilla. Работает с электронной почтой, новостями и календарем. Программой поддерживаются протоколы RSS, IMAP, SMTP, POP3, NNTP. Интерфейс программы Мозилла