Особенности исследования функции многих переменных. Определение функции нескольких переменных

) мы уже неоднократно сталкивались с частными производными сложных функций наподобие и более трудными примерами. Так о чём же ещё можно рассказать?! …А всё как в жизни – нет такой сложности, которую было бы нельзя усложнить =) Но математика – на то и математика, чтобы укладывать многообразие нашего мира в строгие рамки. И иногда это удаётся сделать одним-единственным предложением:

В общем случае сложная функция имеет вид , где, по меньшей мере, одна из букв представляет собой функцию , которая может зависеть от произвольного количества переменных.

Минимальный и самый простой вариант – это давно знакомая сложная функция одной переменной, производную которой мы научились находить в прошлом семестре. Навыками дифференцирования функций вы тоже обладаете (взгляните на те же функции ) .

Таким образом, сейчас нас будет интересовать как раз случай . По причине великого разнообразия сложных функций общие формулы их производных имеют весьма громоздкий и плохо усваиваемый вид. В этой связи я ограничусь конкретными примерами, из которых вы сможете понять общий принцип нахождения этих производных:

Пример 1

Дана сложная функция , где . Требуется:
1) найти её производную и записать полный дифференциал 1-го порядка;
2) вычислить значение производной при .

Решение : во-первых, разберёмся с самой функцией. Нам предложена функция, зависящая от и , которые в свою очередь являются функциями одной переменной:

Во-вторых, обратим пристальное внимание на само задание – от нас требуется найти производнУЮ , то есть, речь идёт вовсе не о частных производных , которые мы привыкли находить! Так как функция фактически зависит только от одной переменной, то под словом «производная» подразумевается полная производная . Как её найти?

Первое, что приходит на ум, это прямая подстановка и дальнейшее дифференцирование. Подставим в функцию :
, после чего с искомой производной никаких проблем:

И, соответственно, полный дифференциал:

Это решение математически корректно, но маленький нюанс состоит в том, что когда задача формулируется так, как она сформулирована – такого варварства от вас никто не ожидает =) А если серьёзно, то придраться тут действительно можно. Представьте, что функция описывает полёт шмеля, а вложенные функции меняются в зависимости от температуры. Выполняя прямую подстановку , мы получаем лишь частную информацию , которая характеризует полёт, скажем, только в жаркую погоду. Более того, если человеку не сведущему в шмелях предъявить готовый результат и даже сказать, что это за функция, то он так ничего и не узнает о фундаментальном законе полёта!

Вот так вот совершенно неожиданно брат наш жужжащий помог осознать смысл и важность универсальной формулы:

Привыкайте к «двухэтажным» обозначениям производных – в рассматриваемом задании в ходу именно они. При этом следует быть очень аккуратным в записи: производные с прямыми значками «дэ» – это полные производные , а производные с округлыми значками – это частные производные . С последних и начнём:

Ну а с «хвостами» вообще всё элементарно:

Подставим найденные производные в нашу формулу:

Когда функция изначально предложена в замысловатом виде, то будет логичным (и тому дано объяснение выше!) оставить в таком же виде и результаты:

При этом в «навороченных» ответах лучше воздержаться даже от минимальных упрощений (тут, например, напрашивается убрать 3 минуса) – и вам работы меньше, и мохнатый друг доволен рецензировать задание проще.

Однако не лишней будет черновая проверка. Подставим в найденную производную и проведём упрощения:


(на последнем шаге использованы тригонометрические формулы , )

В результате получен тот же результат, что и при «варварском» методе решения.

Вычислим производную в точке . Сначала удобно выяснить «транзитные» значения (значения функций ) :

Теперь оформляем итоговые расчёты, которые в данном случае можно выполнить по-разному. Использую интересный приём, в котором 3 и 4 «этажа» упрощаются не по обычным правилам , а преобразуются как частное двух чисел:

И, конечно же, грех не проверить по более компактной записи :

Ответ :

Бывает, что задача предлагается в «полуобщем» виде:

«Найти производную функции , где »

То есть «главная» функция не дана, но её «вкладыши» вполне конкретны. Ответ следует дать в таком же стиле:

Более того, условие могут немного подшифровать:

«Найти производную функции »

В этом случае нужно самостоятельно обозначить вложенные функции какими-нибудь подходящими буквами, например, через и воспользоваться той же формулой:

К слову, о буквенных обозначениях. Я уже неоднократно призывал не «цепляться за буквы», как за спасательный круг, и сейчас это особенно актуально! Анализируя различные источники по теме, у меня вообще сложилось впечатление, что авторы «пошли вразнос» и стали безжалостно бросать студентов в бурные пучины математики =) Так что уж простите:))

Пример 2

Найти производную функции , если

Другие обозначения не должны приводить в замешательство! Каждый раз, когда вы встречаете подобное задание, нужно ответить на два простых вопроса:

1) От чего зависит «главная» функция? В данном случае функция «зет» зависит от двух функций («у» и «вэ»).

2) От каких переменных зависят вложенные функции? В данном случае оба «вкладыша» зависят только от «икса».

Таким образом, у вас не должно возникнуть трудностей, чтобы адаптировать формулу к этой задаче!

Краткое решение и ответ в конце урока.

Дополнительные примеры по первому виду можно найти в задачнике Рябушко (ИДЗ 10.1) , ну а мы берём курс на функцию трёх переменных :

Пример 3

Дана функция , где .
Вычислить производную в точке

Формула производной сложной функции , как многие догадываются, имеет родственный вид:

Решайте, раз догадались =)

На всякий случай приведу и общую формулу для функции :
, хотя на практике вы вряд ли встретите что-то длиннее Примера 3.

Кроме того, иногда приходится дифференцировать «урезанный» вариант – как правило, функцию вида либо . Оставляю вам этот вопрос для самостоятельного исследования – придумайте какую-нибудь простенькие примеры, подумайте, поэкспериментируйте и выведите укороченные формулы производных.

Если что-то осталось недопонятым, пожалуйста, неторопливо перечитайте и осмыслите первую часть урока, поскольку сейчас задача усложнится:

Пример 4

Найти частные производные сложной функции , где

Решение : данная функция имеет вид , и после прямой подстановки и мы получаем привычную функцию двух переменных:

Но такой страх не то чтобы не принято, а уже и не хочется дифференцировать =) Поэтому воспользуемся готовыми формулами. Чтобы вы быстрее уловили закономерность, я выполню некоторые пометки:

Внимательно просмотрите картинку сверху вниз и слева направо….

Сначала найдём частные производные «главной» функции:

Теперь находим «иксовые» производные «вкладышей»:

и записываем итоговую «иксовую» производную:

Аналогично с «игреком»:

и

Можно придерживаться и другого стиля – сразу найти все «хвосты» и потом записать обе производные.

Ответ :

О подстановке что-то как-то совсем не думается =) =), а вот причесать результаты немножко можно. Хотя, опять же, зачем? – только усложните проверку преподавателю.

Если потребуется, то полный дифференциал тут записывается по обычной формуле, и, кстати, как раз на данном шаге становится уместной лёгкая косметика:


Такой вот... ....гроб на колёсиках.

Ввиду популярности рассматриваемой разновидности сложной функции пара заданий для самостоятельного решения. Более простой пример в «полуобщем» виде – на понимание самой формулы;-):

Пример 5

Найти частные производные функции , где

И посложнее – с подключением техники дифференцирования:

Пример 6

Найти полный дифференциал функции , где

Нет, я вовсе не пытаюсь «отправить вас на дно» – все примеры взяты из реальных работ, и «в открытом море» вам могут попасться какие угодно буквы. В любом случае потребуется проанализировать функцию (ответив на 2 вопроса – см. выше) , представить её в общем виде и аккуратно модифицировать формулы частных производных. Возможно, сейчас немного попутаетесь, но зато поймёте сам принцип их конструирования! Ибо настоящие задачи только начинаются:)))

Пример 7

Найти частные производные и составить полный дифференциал сложной функции
, где

Решение : «главная» функция имеет вид и по-прежнему зависит от двух переменных – «икса» и «игрека». Но по сравнению с Примером 4, добавилась ещё одна вложенная функция, и поэтому формулы частных производных тоже удлиняются. Как и в том примере, для лучшего вИдения закономерности, я выделю «главные» частные производные различными цветами:

И снова – внимательно изучите запись сверху вниз и слева направо.

Так как задача сформулирована в «полуобщем» виде, то все наши труды, по существу, ограничиваются нахождением частных производных вложенных функций:

Справится первоклассник:

И даже полный дифференциал получился вполне себе симпатичный:

Я специально не стал предлагать вам какую-то конкретную функцию – чтобы лишние нагромождения не помешали хорошо разобраться в принципиальной схеме задачи.

Ответ :

Довольно часто можно встретить «разнокалиберные» вложения, например:

Здесь «главная» функция хоть и имеет вид , но всё равно зависит и от «икс», и от «игрек». Поэтому работают те же самые формулы – просто некоторые частные производные будут равны нулю. Причём, это справедливо и для функций вроде , у которых каждый «вкладыш» зависит от какой-то одной переменной.

Похожая ситуация имеет место и в двух заключительных примерах урока:

Пример 8

Найти полный дифференциал сложной функции в точке

Решение : условие сформулировано «бюджетным» образом, и мы должны сами обозначить вложенные функции. По-моему, неплохой вариант:

Во «вкладышах» присутствуют (ВНИМАНИЕ! ) ТРИ буквы – старые-добрые «икс-игрек-зет», а значит, «главная» функция фактически зависит от трёх переменных. Её можно формально переписать в виде , и частные производные в этом случае определяются следующими формулами:

Сканируем, вникаем, улавливаем….

В нашей задаче:

Определение. Переменная z (с областью изменения Z ) называется функцией двух независимых переменных х,у в множестве М , если каждой паре (х,у ) из множества М z из Z.

Определение. Множество М , в котором заданы переменные х,у, называется областью определения функции , множество Z –областью значений функции , а сами х,у – ее аргументами .

Обозначения: z = f(x,y), z = z(x,y).

Примеры.

Определение . Переменная z (с областью изменения Z ) называется функцией нескольких независимых переменных в множестве М , если каждому набору чисел из множества М по некоторому правилу или закону ставится в соответствие одно определенное значение z из Z. Понятия аргументов, области определения и области значения вводятся так же, как для функции двух переменных.

Обозначения: z = f , z = z .

Замечание. Так как пару чисел (х,у ) можно считать координатами некоторой точки на плоскости, то будем впоследствии использовать термин «точка» для пары аргументов функции двух переменных, а также для упорядоченного набора чисел , являющихся аргументами функции нескольких переменных.

Геометрическое изображение функции двух переменных

Рассмотрим функцию

z = f(x,y) , (15.1)

определенную в некоторой области М на плоскости Оху . Тогда множество точек трехмерного пространства с координатами (x,y,z) , где , является графиком функции двух переменных. Поскольку уравнение (15.1) определяет некоторую поверхность в трехмерном пространстве, она и будет геометрическим изображением рассматриваемой функции.

Область определения функции z = f(x,y) в простейших случаях представляет собой либо часть плоскости, ограниченную замкнутой кривой, причем точки этой кривой (границы области) могут принадлежать или не пренадлежать области определения, либо всю плоскость, либо,наконец, совокупностьнескольких частей плоскости xOy.


z = f(x,y)


Примерами могут служить уравнения плоскости z = ax + by + c

и поверхностей второго порядка: z = x ² + y ² (параболоид вращения),

(конус) и т.д.

Замечание. Для функции трех и более переменных будем пользоваться термином «поверхность в n -мерном пространстве», хотя изобразить подобную поверхность невозможно.

Линии и поверхности уровня

Для функции двух переменных, заданной уравнением (15.1), можно рассмотреть множество точек (х,у) плоскости Оху , для которых z принимает одно и то же постоянное значение, то есть z = const. Эти точки образуют на плоскости линию, называемую линией уровня .



Пример.

Найдем линии уровня для поверхности z = 4 – x ² - y ². Их уравнения имеют вид x ² + y ² = 4 – c (c =const) – уравнения концентрических окружностей с центром в начале координат и с радиусами . Например, при с =0 получаем окружность x ² + y ² = 4 .

Для функции трех переменных u = u (x, y, z) уравнение u (x, y, z) = c определяет поверхность в трехмерном пространстве, которую называют поверхностью уровня .

Пример.

Для функции u = 3x + 5y – 7z –12 поверхностями уровня будет семейство параллельных плоскостей, задаваемых уравнениями 3x + 5y – 7z –12 + с = 0.

Предел и непрерывность функции нескольких переменных

Введем понятие δ-окрестности точки М 0 (х 0 , у 0) на плоскости Оху как круга радиуса δ с центром в данной точке. Аналогично можно определить δ-окрестность в трехмерном пространстве как шар радиуса δ с центром в точке М 0 (х 0 , у 0 , z 0) . Для n -мерного пространства будем называть δ-окрестностью точки М 0 множество точек М с координатами , удовлетворяющими условию

где - координаты точки М 0 . Иногда это множество называют «шаром» в n -мерном пространстве.

Определение. Число А называется пределом функции нескольких переменных f в точке М 0 , если такое, что | f(M) – A | < ε для любой точки М из δ-окрестности М 0 .

Обозначения: .

Необходимо учитывать, что при этом точка М может приближаться к М 0 , условно говоря, по любой траектории внутри δ-окрестности точки М 0 . Поэтому следует отличать предел функции нескольких переменных в общем смысле от так называемых повторных пределов , получаемых последовательными предельными переходами по каждому аргументу в отдельности.

Примеры.

Замечание. Можно доказать, что из существования предела в данной точке в обычном смысле и существования в этой точке пределов по отдельным аргументам следует существование и равенство повторных пределов. Обратное утверждение неверно.

Определение Функция f называется непрерывной в точке М 0 , если (15.2)

Если ввести обозначения , то условие (15.2) можно переписать в форме (15.3)

Определение . Внутренняя точка М 0 области определения функции z = f (M) называется точкой разрыва функции, если в этой точке не выполняются условия (15.2), (15.3).

Замечание. Множество точек разрыва может образовывать на плоскости или в пространстве линии или поверхности разрыва .

Примеры.

Свойства пределов и непрерывных функций

Так как определения предела и непрерывности для функции нескольких переменных практически совпадает с соответствующими определениями для функции одной переменной, то для функций нескольких переменных сохраняются все свойства пределов и непрерывных функций, доказанные в первой части курса, а именно:

1) Если существуют то существуют и (если ).

2) Если а и для любого i существуют пределы и существует , где М 0 , то существует и предел сложной функции при , где - координаты точки Р 0 .

3) Если функции f(M) и g(M) непрерывны в точке М 0 , то в этой точке непрерывны и функции f(M) + g(M), kf(M), f(M) g(M), f(M)/g(M) (если g(M 0) ≠ 0).

4) Если функции непрерывны в точке Р 0 , а функция непрерывна в точке М 0 , где , то сложная функция непрерывна в точке Р 0 .

5) Функция непрерывная в замкнутой ограниченной области D , принимает в этой области свое наибольшее и наименьшее значения.

6) Если функция непрерывная в замкнутой ограниченной области D , принимает в этой области значения А и В , то она принимает в области D и любое промежуточное значение, лежащее между А и В .

7) Если функция непрерывная в замкнутой ограниченной области D , принимает в этой области значения разных знаков, то найдется по крайней мере одна точка из области D , в которой f = 0.

Частные производные

Рассмотрим изменение функции при задании приращения только одному из ее аргументов – х i , и назовем его .

Определение . Частной производной функции по аргументу х i называется .

Обозначения: .

Таким образом, частная производная функции нескольких переменных определяется фактически как производная функции одной переменной – х i . Поэтому для нее справедливы все свойства производных, доказанные для функции одной переменной.

Замечание. При практическом вычислении частных производных пользуемся обычными правилами дифференцирования функции одной переменной, полагая аргумент, по которому ведется дифференцирование, переменным, а остальные аргументы – постоянными.

Примеры .

1. z = 2x ² + 3xy –12y ² + 5x – 4y +2,

2. z = x y ,

Геометрическая интерпретация частных производных функции двух переменных

Рассмотрим уравнение поверхности z = f (x,y) и проведем плоскость х = const. Выберем на линии пересечения плоскости с поверхностью точку М (х,у) . Если задать аргументу у приращение Δу и рассмотреть точку Т на кривой с координатами (х, у+ Δу, z+ Δ y z ), то тангенс угла, образованного секущей МТ с положительным направлением оси Оу , будет равен . Переходя к пределу при , получим, что частная производная равна тангенсу угла, образованного касательной к полученной кривой в точке М с положительным направлением оси Оу. Соответственно частная производная равна тангенсу угла с осью Ох касательной к кривой, полученной в результате сечения поверхности z = f (x,y) плоскостью y = const.

Дифференцируемость функции нескольких переменных

При исследовании вопросов, связанных с дифференцируемостью, ограничимся случаем функции трех переменных, поскольку все доказательства для большего количества переменных проводятся так же.

Определение . Полным приращением функции u = f(x, y, z) называется

Теорема 1. Если частные производные существуют в точке (х 0 , у 0 , z 0 ) и в некоторой ее окрестности и непрерывны в точке (x 0 , y 0 , z 0 ) , то- ограниченные (т.к. их модули не превышают 1).

Тогда приращение функции, удовлетворяющей условиям теоремы 1, можно представить в виде: , (15.6)

Определение . Если приращение функции u = f (x, y, z) в точке (x 0 , y 0 , z 0) можно представить в виде (15.6), (15.7), то функция называется дифференцируемой в этой точке, а выражение - главной линейной частью приращения или полным дифференциалом рассматриваемой функции.

Обозначения: du, df (x 0 , y 0 , z 0).

Так же, как в случае функции одной переменной, дифференциалами независимых переменных считаются их произвольные приращения, поэтому

Замечание 1. Итак, утверждение «функция дифференцируема» не равнозначно утверждению «функция имеет частные производные» - для дифференцируемости требуется еще и непрерывность этих производных в рассматриваемой точке.

.

Рассмотрим функцию и выберем х 0 = 1, у 0 = 2. Тогда Δх = 1,02 – 1 = 0,02; Δу = 1,97 – 2 = -0,03. Найдем ,

Следовательно, учитывая, что f ( 1, 2) = 3, получим.

Скачать с Depositfiles

Лекции 1-4

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ.

Контрольные вопросы.

    Частное и полное приращение функции нескольких переменных (ФНП).

    Предел функции нескольких переменных. Свойства пределов ФНП.

    Непрерывность ФНП. Свойства непрерывных функций.

    Частные производные первого порядка.

Определение : если каждой рассматриваемой совокупности значений переменных соответствует определенное значение переменной w, то будем называть w функцией независимых переменных :

(1)

Определение : областью определения D ( f ) функции (1) называется совокупность таких наборов чисел
, при которых определена функция (1).

Область D ( f ) может быть открытой или замкнутой. Например для функции:

D (f ) будут все точки пространства, для которых выполняется неравенство (замкнутый шар), а для функции (открытый шар).

В дальнейшем мы будем рассматривать в основном функции двух переменных, т.к. во-первых, принципиального различия между двумя и большим числом переменных нет, увеличение числа переменных ведет лишь к громоздкости выкладок. Во-вторых, случай двух переменных допускает наглядную геометрическую интерпретацию.

Геометрическим изображением функции двух переменных
является некоторая поверхность, которая может быть задана явно или неявно. Например: a )
— явное задание (параболоид вращения), б)
— неявное задание (сфера).

При построении графика функции часто пользуются методом сечений .

Пример . Построить график функции .
Воспользуемся методом сечений.

в плоскости
– парабола.

в плоскости
–парабола.

в плоскости
– окружность.

Искомая поверхность – параболоид вращения.

Расстоянием между двумя произвольными точками
и
(евклидова) пространства
называется число

Множество точек называется открытым кругом радиуса с центром в точке , – окружностью радиуса с центром в точке .

Открытый круг радиуса с центром в точке называется -окрестностью точки .

О

пределение . Точка называется внутренней точкой множества , если существует -окрестность
точки , целиком принадлежащая множеству (т.е.
).

Определение . Точка называется граничной точкой множества , если в любой ее -окрестности содержатся точки, как принадлежащие множеству , так и не принадлежащие ему.



Граничная точка множества может как принадлежать этому множеству, так и не принадлежать ему.

Определение . Множество называется открытым , если все его точки – внутренние.

Определение . Множество называется замкнутым , если оно содержит все свои граничные точки. Множество всех граничных точек множества называется его границей (и часто обозначается символом
). Заметим, что множество
является замкнутым и называется
замыканием множества .

Пример . Если , то . При этом .

Частное и полное приращение функции.

Если одна независимая переменная (например, х ) получает приращение х , а другая переменная не меняется, то функция получает приращение:

которое называется частным приращением функции по аргументу х .

Если же все переменные получают приращения, то функция получает полное приращение:

Например, для функции
будем иметь:

Предел функции нескольких переменных.

Определение . Будем говорить, что последовательность точек
сходится при
к точке
, если при .

В этом случае точку
называют пределом указанной последовательности и пишут:
при
.

Легко показать, что тогда и только тогда, когда одновременно
,
(т.е. сходимость последовательности точек пространства эквивалентна покоординатной сходимости ).

Определение . Число называют пределом функции
при
, если для

такое, что
, как только.

В этом случае пишут
или
при
.


При кажущейся полной аналогии понятий предела функций одной и двух переменных существует глубокое различие между ними. В случае функции одной переменной для существования предела в точке необходимо и достаточно равенство лишь двух чисел – пределов по двум направлениям: справа и слева от предельной точки . Для функции двух переменных стремление к предельной точке
на плоскости может происходить по бесконечному числу направлений (и необязательно по прямой), и потому требование существования предела у функции двух (или нескольких) переменных «жестче» по сравнению с функцией одной переменной.

Пример . Найти
.

Пусть стремление к предельной точке
происходит по прямой
. Тогда
.

Предел, очевидно, не существует, так как число
зависит от .

Свойства пределов ФНП :

Если существуют и
, то: , Аналогично определяется частная производная по и вводятся ее обозначения.

Легко видеть, что частная производная – это производная функции одной переменной, когда значение другой переменной фиксировано. Поэтому частные производные вычисляются по тем же правилам, что и вычисление производных функций одной переменной.

Пример . Найти частные производные функции
.

Имеем:
,
.

Функции многих переменных

§1. Понятие функции многих переменных.

Пусть имеется n переменных величин . Каждый набор
обозначает точку n - мерного множества
(п -мерный вектор).

Пусть даны множества
и
.

Опр . Если каждой точке
ставится в соответствие единственное число
, то говорят, что задана числовая функция n переменных:

.

называют областью определения,
- множеством значений данной функции.

В случае n =2 вместо
обычно пишут x , y , z . Тогда функция двух переменных имеет вид:

z = f (x , y ).

Например,
- функция двух переменных;

- функция трех переменных;

Линейная функция n переменных.

Опр . Графиком функции n переменных называется n - мерная гиперповерхность в пространстве
, каждая точка которой задается координатами

Например, графиком функции двух переменных z = f (x , y ) является поверхность в трехмерном пространстве, каждая точка которой задается координатами (x , y , z ) , где
, и
.

Поскольку график функции трех и более переменных изобразить не представляется возможным, в основном мы будем (для наглядности) рассматривать функции двух переменных.

Построение графиков функций двух переменных является довольно сложной задачей. Существенную помощь в ее решении может оказать построение так называемых линий уровня.

Опр . Линией уровня функции двух переменных z = f (x , y ) называется множество точек плоскости ХОУ , являющихся проекцией сечения графика функции плоскостью, параллельной ХОУ. В каждой точке линии уровня функция имеет одно и то же значение. Линии уровня описываются уравнением f (x , y )=с , где с – некоторое число. Линий уровня бесконечно много, и через каждую точку области определения можно провести одну из них.

Опр . Поверхностью уровня функции n переменных y = f (
) называется гиперповерхность в пространстве
, в каждой точке которой значение функции постоянно и равно некоторому значению с . Уравнение поверхности уровня: f (
)=с.

Пример . Построить график функции двух переменных

.

.

При с=1:
;
.

При с=4:
;
.

При с=9:
;
.

Линии уровня – концентрические окружности, радиус которых уменьшается с ростом z .

§2. Предел и непрерывность функции многих переменных.

Для функций многих переменных определяются те же понятия, что и для функции одной переменной. Например, можно дать определения предела и непрерывности функции.

Опр . Число А называется пределом функции двух переменных z = f (x , y ) при
,
и обозначается
, если для любого положительного числа найдется положительное число , такое, что если точка
удалена от точки
на расстояние меньше , то величины f (x , y ) и А отличаются меньше чем на .

Опр . Если функция z = f (x , y ) определена в точке
и имеет в этой точке предел, равный значению функции
, то она называется непрерывной в данной точке.

.

§3. Частные производные функции многих переменных.

Рассмотрим функцию двух переменных
.

Зафиксируем значение одного из ее аргументов, например , положив
. Тогда функция
есть функция одной переменной . Пусть она имеет производную в точке :

.

Данная производная называется частной производной (или частной производной первого порядка) функции
по в точке
и обозначается:
;
;
;
.

Разность называется частным приращением по и обозначается
:

Учитывая приведенные обозначения, можно записать


.

Аналогично определяется

.

Частной производной функции нескольких переменных по одной из этих переменных называется предел отношения частного приращения функции к приращению соответствующей независимой переменной, когда это приращение стремится к нулю.

При нахождении частной производной по какому-либо аргументу другие аргументы считаются постоянными. Все правила и формулы дифференцирования функций одной переменной справедливы для частных производных функции многих переменных.

Заметим, что частные производные функции являются функциями тех же переменных. Эти функции, в свою очередь, могут иметь частные производные, которые называются вторыми частными производными (или частными производными второго порядка) исходной функции.

Например, функция
имеет четыре частных производных второго порядка, которые обозначаются следующим образом:

;
;

;
.

и
- смешанные частные производные.

Пример. Найти частные производные второго порядка для функции

.

Решение.
,
.

,
.

,
.

Задание .

1. Найти частные производные второго порядка для функций

,
;

2. Для функции
доказать, что
.

Полный дифференциал функции многих переменных.

При одновременном изменении величин х и у функция
изменится на величину , называемую полным приращением функции z в точке
. Так же, как и в случае функции одной переменной, возникает задача о приближенной замене приращения
на линейную функцию от
и
. Роль линейного приближения выполняет полный дифференциал функции:

Полный дифференциал второго порядка:

=
.

=
.

В общем виде полный дифференциал п -го порядка имеет вид:

Производная по направлению. Градиент.

Пусть функция z = f (x , y ) определена в некоторой окрестности точки M(x , y ) и - некоторое направление, задаваемое единичным вектором
. Координаты единичного вектора выражаются через косинусы углов, образуемых вектором и осями координат и называемых направляющими косинусами:

,

.

При перемещении точки M(x , y ) в данном направлении l в точку
функция z получит приращение

называемое приращением функции в данном направлении l .

Если ММ 1 =∆l , то

Т

огда

О

пр
. Производной функции z = f (x , y ) по направлению называется предел отношения приращения функции в этом направлении к величине перемещения ∆l при стремлении последней к нулю:

Производная по направлению характеризует скорость изменения функции в данном направлении. Очевидно, что частные производные и представляют собой производные по направлениям, параллельным осям Ox и Oy . Нетрудно показать, что

Пример . Вычислить производную функции
в точке (1;1) по направлению
.

Опр . Градиентом функции z = f (x , y ) называется вектор с координатами, равными частным производным:

.

Рассмотрим скалярное произведение векторов
и
:

Легко видеть, что
, т.е. производная по направлению равна скалярному произведению градиента и единичного вектора направления .

Поскольку
, то скалярное произведение максимально, когда векторы одинаково направлены. Таким образом, градиент функции в точке задает направление наискорейшего возрастания функции в этой точке, а модуль градиента равен максимальной скорости роста функции.

Зная градиент функции, можно локально строить линии уровня функции.

Теорема . Пусть задана дифференцируемая функция z = f (x , y ) и в точке
градиент функции не равен нулю:
. Тогда градиент перпендикулярен линии уровня, проходящей через данную точку.

Таким образом, если, начиная с некоторой точки, строить в близких точках градиент функции и малую часть перпендикулярной ему линии уровня, то можно (с некоторой погрешностью) построить линии уровня.

Локальный экстремум функции двух переменных

Пусть функция
определена и непрерывна в некоторой окрестности точки
.

Опр . Точка
называется точкой локального максимума функции
, если существует такая окрестность точки , в которой для любой точки
выполняется неравенство:

.

Аналогично вводится понятие локального минимума.

Теорема (необходимое условие локального экстремума) .

Для того, чтобы дифференцируемая функция
имела локальный экстремум в точке
, необходимо, чтобы все ее частные производные первого порядка в этой точке были равны нулю:

Итак, точками возможного наличия экстремума являются те точки, в которых функция дифференцируема, а ее градиент равен 0:
. Как и в случае функции одной переменной, такие точки называются стационарными.

V. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Понятие функции нескольких переменных

Ранее была рассмотрена функция одной независимой переменной. Однако, решая конкретные практические задачи, исследователь, в общем случае, сталкивается с такими явлениями, которые зависят сразу от нескольких независимых переменных величин. В качестве самых простых примеров этого можно привести необходимость вычисления площади прямоугольника либо объема параллелепипеда. Действительно, площадь прямоугольника определяется двумя независимыми друг от друга величинами – длинами сторон прямоугольника и :

Объем параллелепипеда определяется уже тремя независимыми величинами – длинами его ребер , , :

Можно привести и более сложные примеры. Иначе говоря, число независимых переменных величин может быть каким угодно. В этих случаях говорят, что искомая величина является функцией двух, трех или большего числа переменных.

Часто пытаются исключить второстепенные переменные и оставить только одну, основную, то есть пытаются получить функцию одной переменной. Но это не всегда возможно. Упрощение выражения дает часто функцию двух или трех переменных. Сразу же необходимо отметить, что исследование функций многих переменных имеет подобные методы. Поэтому для простоты будем изучать функции двух переменных и полученные результаты при необходимости обобщать затем на произвольный случай.

В случае одной переменной функция являлась оператором, который каждому элементу из множества ставил в соответствие один и только один элемент из множества .

Каким же образом определяется аргумент функции двух переменных? Так как мы исследуем функции действительных аргументов, то величина такой функции зависит от пары двух действительных чисел. С точки зрения теории множеств это не что иное, как произведение двух множеств и , к которым принадлежат переменные и .

Определение 5.1.1 . Пусть , а , тогда произведение дает новое множество , каждый элемент которого содержит пару чисел .



Из определения 5.1.1 следует, что, зная множество значений и функции двух переменных, можно найти область ее определения. Очевидно, это будут все возможные комбинации и .

Произведение двух действительных числовых множеств и образует множество в пространстве . Графическое представление этого произведения – это плоскость или часть этой плоскости.

Определение 5.1.2 . Функцией двух переменных называется соотношение, которое каждой паре чисел ставит в соответствие одно и только одно число .

Если имеется функция переменных, то ее областью определения будет пространство или его часть. Такое множество уже графически не представимо.

Функции двух переменных, так же как и функции одной переменной, можно представить с помощью таблицы, графика или аналитического выражения. Табличный способ наименее удобен, однако, при экспериментальном определении значения функции он может оказаться единственным. Более информативны графическое и аналитическое задание функции. При этом последний способ наиболее удобен, так как дает возможность провести полное исследование данного понятия.

Для графического представления функции двух переменных рисуют трехмерную систему координат, например, прямоугольную декартовую. На плоскости изображают область определения данной функции. В каждой точке области определения восстанавливается перпендикуляр, который имеет длину, равную значению функции в этой точке. Объединяя все полученные точки, получают некоторую поверхность (рис. 5.1.1). Таким образом, графически функция двух переменных – это некоторая поверхность. Для изображения функций большего числа переменных графический способ уже не применим.

При аналитическом задании функции двух переменных записывается формула , при помощи которой по заданным значениям независимых переменных отыскивается значение функции. Увеличение числа переменных при аналитическом задании функции проблем не создает ().

При исследовании функции двух или нескольких переменных возникают те же понятия, что и для функции одной переменной: предел, непрерывность, приращения, производная.

Рассмотрим вначале сечения поверхности плоскостями и (рис. 5.1.2).

Так как на линии константой является , то на ней меняется лишь в зависимости от изменения . Если в точке задать приращение , то произойдет перемещение в точку . Разность аппликат в этих точках будет равна изменению значения функции , которое не будет зависеть от переменной .

Таким образом, давая приращение , получаем приращение , которое называется частным приращением по и обозначается .

Аналогично определяется частное приращение по : .

Давая одновременно приращения переменным и , получаем полное приращение функции: . При этом необходимо иметь в виду, что .

Введем теперь понятие окрестности точки на плоскости.

Определение 5.1.3 . -окрестностью точки с радиусом называется множество всех точек , которые удовлетворяют неравенству , или, иначе говоря, множество всех точек, которые лежат внутри круга радиуса с центром в точке (рис. 5.1.3).

На основании определения -окрестности можно ввести понятие предела функции двух переменных. Пусть функция определена в некоторой области (рис. 5.1.3). Возьмем в этой области некоторую точку . к точке;

3) определена во всех точках, но .

 
Статьи по теме:
Обзор лучших разных видов эпиляторов(2019г
Пинцетом или бритвой вы лишь на короткое время избавитесь от волос, а после бритья они будут расти ещё интенсивней. Поэтому и придумали эпиляцию, что дословно означает искусственное удаление волос с помощью различных средств. Также происходит воздействие
Sony Xperia XZ - Технические характеристики
Статью прочитали: 5 226 Компания Sony выпускает новый флагманский смартфон каждые полгода, а иногда и чаще. Несмотря на это, а может благодаря этому, компания слегка выпала из поля зрения широкого круга пользователей. Новые модели Sony привлекают всё м
Как самостоятельно перепрошить любой iphone в домашних условиях
Iphone одна из самых популярных марок телефонов, но при этом очень дорогая. Китайские копии телефонов, конечно, не такие производительные, но выглядят эффектно. А вот китайская прошивка оставляет желать лучшего.Пошаговое руководство по прошивке/ перепроши
Mozilla Thunderbird скачать бесплатно русская версия
Mozilla Thunderbird — бесплатный почтовый клиент, который является отдельной составляющей проекта Mozilla. Работает с электронной почтой, новостями и календарем. Программой поддерживаются протоколы RSS, IMAP, SMTP, POP3, NNTP. Интерфейс программы Мозилла